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Abstract

Credit migration matrices are cardinal inputs to many risk management applications; their

accurate estimation is therefore critical. We explore two approaches: cohort and two variants

of duration – one imposing, the other relaxing time homogeneity – and the resulting differ-

ences, both statistically through matrix norms and economically using a credit portfolio

model. We propose a new metric for comparing these matrices based on singular values

and apply it to credit rating histories of S&P rated US firms from 1981–2002. We show that

the migration matrices have been increasing in ‘‘size’’ since the mid-1990s, with 2002 being the

‘‘largest’’ in the sense of being the most dynamic. We develop a testing procedure using boot-

strap techniques to assess statistically the differences between migration matrices as repre-

sented by our metric. We demonstrate that it can matter substantially which estimation

method is chosen: economic credit risk capital differences implied by different estimation tech-

niques can be as large as differences between economic regimes, recession vs. expansion. Ignor-

ing the efficiency gain inherent in the duration methods by using the cohort method instead is

more damaging than imposing a (possibly false) assumption of time homogeneity.
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1. Introduction

Credit migration or transition matrices, which characterize past changes in credit

quality of obligors (typically firms), are cardinal inputs to many risk management

applications, including portfolio risk assessment, modeling the term structure of
credit risk premia, pricing of credit derivatives and assessment of regulatory capital.

For example, in the New Basel Accord (BIS, 2001), capital requirements are driven

in part by ratings migration. Their accurate estimation is therefore critical. In this

paper we present several methods for measuring, estimating and comparing credit

migration matrices. Specifically we explore two approaches, cohort and two variants

of duration (or hazard) – parametric (imposing time homogeneity or invariance) and

non-parametric (relaxing time homogeneity). 1 We ask three questions: (1) how

would one measure the scalar difference between these matrices; (2) how can one
assess whether those differences are statistically significant; and (3) even if the differ-

ences are statistically significant, are they economically significant?

We use these different estimation methods to compute credit migration matrices

from firm credit rating migration histories from Standard and Poors (S&P) covering

1981–2002. We then compare the resulting differences, both statistically through ma-

trix norms, eigenvalue and -vector analysis, and economically with a credit portfolio

model. Along the way we develop a convenient scalar metric which captures the

overall dynamic size of a given matrix and contains sufficient information to facili-
tate meaningful comparisons between different credit migration matrices. We show

that these migration matrices have been getting ‘‘larger’’ since the mid-1990s and

that they tend to increase during recessions. The most recent year available, 2002,

has generated the ‘‘largest’’ migration matrix. Moreover, the matrices estimated with

the cohort method tend to be ‘‘smaller’’ than the duration matrices, and this differ-

ence seems to be increasing recently.

We propose a bootstrap test to assess the differences between Markov matrices as

represented by our metric. We demonstrate that it can matter substantially which
method is chosen: for example, economic credit risk capital differences implied by

different estimation techniques can be as large as differences between economic re-

gimes, recession vs. expansion. Viewed through the lens of credit risk capital, ignor-

ing the efficiency gain inherent in the duration methods is more damaging than

making a (possibly false) assumption of time homogeneity, a significant result given

that the cohort method is the method of choice for most practitioners.
1 In simple terms, the cohort approach just takes the observed proportions from the beginning of the

year to the end (for the case of annual migration matrices) as estimates of migration probabilities. For

example, if two firms out of 100 went from grade �AA� to �A�, then the PAA!A = 2%. Any movements

within the year are not accounted for. The duration approach counts all rating changes over the course of

the year and divides by the time spent in the starting state or rating to obtain the migration probability

estimate.



Table 1

Value change of a BBB bond 1 year hence

Credit grade at year-end Marrison (2002, Chapter 18) Saunders and Allen (2002, Chapter 6)

AAA 101.7% 101.7%

AA 101.4% 101.5%

A 100.9% 101.0%

BBB 100.0% 100.0%

BB 96.9% 94.9%

B 92.6% 91.2%

CCC 89.3% 77.8%

D 70.0% 47.5%

Comparison is relative to no rating change.
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Perhaps the simplest use of a transition or migration matrix is the valuation of a

bond or loan portfolio. Given a credit grade today, say BBB, 2 the value of that

credit asset one year hence will depend, among other things, on the probability that

it will remain BBB, migrate to a better or worse credit grade, or even default at year-

end. This can range from an increase in value of 1–2% in case of upgrade to a decline

in value of 30–50% in case of default, as illustrated in Table 1. 3 More sophisticated

examples of risky bond pricing methods, such as outlined by Jarrow and Turnbull

(1995) and Jarrow et al. (1997), require these matrices as an input, as do credit deriv-
atives such as models by Kijima and Komoribayashi (1998) and Acharya et al.

(2002). In risk management, credit portfolio models such as CreditMetrics�
(Gupton et al., 1997) make use of this matrix to simulate the value distribution of

a portfolio of credit assets.

To our knowledge there has been little work in establishing formal comparisons

between credit migration matrices. In the literature such metrics applied to the tran-

sition matrices for general Markov chains, which measure the amount of migration

(mobility), are sometimes called mobility indices. Shorrocks (1978), looking at in-
come mobility, propose indices for Markov matrices using eigenvalues and determi-

nants, a line of inquiry extended in Geweke et al. (1986), hereafter GMZ. They

present a set of criteria by which the performance of a proposed metric (for arbitrary

transition matrices) should be judged. We propose an additional criterion, distribu-

tion discriminatory, which is particularly relevant for credit migration matrices: the

metric should be sensitive to the distribution of off-diagonal probability mass. This

is important since far migrations have different economic and financial meaning than

near migrations. The most obvious example is migration to the Default state (typi-
cally the last column of the migration matrix) which clearly has a different impact

than migration of just one grade down (i.e. one off the diagonal).

Credit migration matrices are said to be diagonally dominant, meaning that most

of the probability mass resides along the diagonal; most of the time there is no

migration. Bangia et al. (2002) estimate coefficients of variation of the elements or
2 For no reason other than convenience and expediency, we will make use of the S&P nomenclature for

the remainder of the paper.
3 Default rarely results in total loss.
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parameters of the migration matrix as a characterization of estimation noise or

uncertainty. Unsurprisingly they find that by and large only the diagonal elements

are estimated with high precision. The further one moves away from the diagonal,

the lower the degree of estimation precision. They also conduct t-tests to analyze

cell-by-cell differences between different migration matrices; again, because of the
low number of observations for far-off-diagonal elements these t-tests were rarely

significant. 4 Christensen et al. (2004) develop bootstrap methods to estimate confi-

dence sets for transition probabilities, focusing on the default probabilities in partic-

ular, which are superior to traditional multinomial estimates; specifically, they are

tighter. Arvanitis et al. (1999) (hereafter referred to as AGL) propose a metric to

compare migration matrices of different horizons and test the first-order Markov

assumption. They suggest a cut-off value of 0.08 but do not tell us why 0.08 is suf-

ficiently small, nor what would be sufficiently large to reject similarity. Moreover,
they ignore estimation noise and concomitant parameter uncertainty.

In a separate but related line of research, Israel et al. (2001) show conditions

under which generator matrices exist for an empirically observed Markov transition

matrix and propose adjustments to guarantee existence. They use the L1 norm (aver-

age absolute difference) to examine differences in pre- and post-adjustment migration

matrices. However, they do so without recognizing that the matrices are estimated

with error, making it difficult to judge whether a computed distance is in fact large

enough to overcome estimation noise. We are the first to propose a formal scalar
metric suitable for credit migration matrices and to devise a procedure for evaluating

their statistical significance in the presence of estimation noise.

The outline of the paper is as follows. In Section 2 we establish notation and def-

initions, review some well-known dynamic properties of Markov matrices using

eigenvalues (and eigenvectors), and summarize the existing techniques for comparing

matrices. In Section 3 we propose our new metric and new performance criterion.

Here we motivate the subtraction of the identity matrix and develop a metric based

on singular values. Section 4 gives a brief presentation of how to estimate the migra-
tion matrices and of the bootstrap method which we use to assess statistical signif-

icance of our matrix metric presented in Section 3. In Section 5 we apply our

metric to credit rating histories of US firms from 1981 to 2002, and explore different

methods for estimating credit migration matrices. We examine whether the empirical

estimates are statistically distinguishable and whether they make material economic

difference. Section 6 provides some concluding remarks.
2. Credit migration matrices

In this section we briefly introduce definitions and notation and set up the analytic

framework. The basic question we want to answer is: how does one compare two
4 For this and other reasons, Bangia et al. (2002) found it very difficult to reject the first-order Markov

property of credit migration matrices.
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migration matrices? Typically these are large objects. For instance, with seven whole

grades or ratings plus the Default state, we have an 8 · 8 matrix with (7 · 7) + 7 = 56

unique cells to compare. To be sure, these matrices have a lot of structure, and in this

and the next section we explore and exploit that structure to arrive at a scalar metric

of comparison.

2.1. Definitions

Consider the state vector, x(t), defined as a row-vector containing the discrete

probability distribution of the credit rating (say, for a given firm) at time t. For

example, this could be a portfolio of loans apportioned by rating. The number of

elements of x, denoted N, corresponds to the number of different possible credit rat-

ings (typically arranged in the order from best to worst, with the ‘‘Default’’ rating as
its last element). 5 Usually such matrices are evaluated at discrete points in time sep-

arated by the sample period, Dt, in which case x(k) is then taken to represent the

state at time kDt (i.e. the time epoch with index k). The row-vector x(k + 1) describes

the discrete probability distribution of the credit rating (for the same firm or port-

folio) at the next discrete point in time, (k + 1)Dt. We assume that the discrete

evolution of the state vector is governed by a Markov process 6 such that

x(k + 1) = x(k)P, where P represents the migration matrix defining the transition

of the state vector from one epoch to the next. Each row of P defines a discrete prob-
ability distribution describing the probability of transitioning from a given credit rat-

ing at time kDt to any of the possible credit ratings at time (k + 1)Dt.
In order to understand the dynamics of the process and therefore any mobility

metrics, it will be key to look at its time evolution. We turn to this next.

2.2. Time evolution: Eigenvalue decomposition

Assuming that P is time homogeneous (or time invariant), i.e. constant over time
(perhaps unrealistic in practice, but a useful mathematical simplification), the solu-

tion for the state vector at any future time can be expressed in terms of the initial

state vector, x(0), for any k as

xðkÞ ¼ xð0ÞPk: ð2:1Þ
Since the eigenvalues (and eigenvectors) of the transition matrix are intimately

related to the time evolution of the state vector, we often express P in terms of its

eigenvalue decomposition, i.e.

P ¼ SKS�1;

where K represents the diagonal matrix containing the eigenvalues of P, and S con-

tains the corresponding eigenvectors (one per column). Eq. (2.1) becomes
5 Purely as a matter of convenience, we will follow the notation from Standard and Poors (S&P) which,

from best to worst, is AAA, AA, A, BBB, BB, B, and CCC. Thus typically N = 8 (including default D).
6 See Israel et al. (2001) for conditions under which credit migration matrices are Markov.
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xðkÞ ¼ xð0ÞSKkS�1: ð2:2Þ
Eigenvalues and -vectors will play a central role in several mobility indices discussed

below in Section 2.5.
2.3. Steady-state behavior

An important consequence of the fact that each row of P sums to unity is that the

dynamic system (describing the evolution of x(k)) is neutrally stable. In other words,

the solution for x(k) never dies away to zero (as it would for a stable system) nor does

it explode to infinity (as it would for an unstable system): instead it reaches a steady-

state solution, x1 , x(k!1). This implies that (at least) one of the eigenvalues (ele-

ments of K) must be equal to 1, such that when raised to the kth power (in Eq. (2.2))

it persists indefinitely, and that all the other (non-unity) eigenvalues have magnitudes
less than one such that when raised to the kth power, they eventually decay away.

The steady-state probability distribution, x1, is given by

xð1Þ ¼ xð0ÞP1 ¼ xð0ÞSK1S�1;

where P1 represents P raised to the infinite power, resulting in the limiting transition

matrix (denoted P� in GMZ).

In the most general case, only one eigenvalue will be equal to unity with all others

less than unity. In that case, x1 is given by (some multiple of) the eigenvector (of the

transpose of P) corresponding to the unity eigenvalue. 7 The rate at which the system

decays towards x1 is governed by the slowest-decaying term or the second-largest

eigenvalue (denoted k2).
Consider the following 2-d example to make things clear. Assuming a two-ratings

system, say ‘‘A’’ and ‘‘B’’, with no Default absorbing state for now, the most general

migration matrix is given by

P ¼
1� p1 p1
p2 1� p2

� �
; 06 p1 6 1; 06 p2 6 1: ð2:3Þ

The rate of decay in the solution is governed by the magnitude of k2.
8 For exam-

ple, the time taken for the system to decay to, say, within 10% of the steady state, is

given by

k10% ¼ logð10%Þ
logðk2Þ

¼ logð0:1Þ
logðj 1� p1 � p2 jÞ

: ð2:4Þ

If we consider typical values of, say, 0.05 for p1 and p2 in a yearly transition matrix,

Eq. (2.4) gives
7 These particular properties associated with the unity eigenvalue (and its eigenvector) of a Markov

matrix are a consequence of the Perron–Frobenius theorem in matrix theory.
8 See the appendix in Jafry and Schuermann (2003) for details and an illustration.
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k10% ¼ logð0:1Þ
logð0:9Þ � 22 years: ð2:5Þ

In economic terms, this is a long time, especially when we consider that records of
credit ratings are available only over a few decades. Moreover, the validity of the lin-

ear, time invariant Markov assumptions become more questionable over such long

time periods.

2.4. The absorbing ‘‘Default’’ state

The ‘‘Default’’ state is usually considered as absorbing, implying that any firm

which has reached this state can never return to another credit rating. 9 An impor-
tant mathematical consequence of the inclusion of the absorbing state is that the

steady-state solution (i.e. the first eigenvector of (the transpose of) P) is identically

equal to the absorbing row of P. In other words, for a general migration matrix

which exhibits non-trivial probabilities of default (i.e. with some non-zero elements

in the absorbing column), the probability distribution x(k) will always settle to the

default state. Given sufficient time, all firms will eventually sink to the Default

state. 10 This behavior is clearly a mathematical artifact, stemming from the idealized

linear, time invariant assumptions inherent in the simple Markov model. In reality
the economy (and hence the migration matrix) will change on time-scales far shorter

than required to reach the idealized Default steady-state proscribed by an assumed

constant migration matrix.

2.5. Existing techniques for comparing matrices

2.5.1. Cell-by-cell distance metrics

Two common approaches for comparing two matrices (say PA and PB, each with
dimension N · N) are the L1 and L2 (Euclidean) distance metrics. 11 The L1 metric

computes the average absolute difference while the L2 (Euclidean) distance metric

computes the average root-mean-square difference between corresponding elements

of the matrices. Specifically,

DML1ðPA;PBÞ ,
PN

i¼1

PN
j¼1jPA;i;j � PB;i;jj

N 2
;

DML2ðPA;PBÞ ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

PN
j¼1ðPA;i;j � PB;i;jÞ2

q
N 2

:

ð2:6Þ
9 There are exceptions, namely if a firm re-emerges from bankruptcy and then obtains a credit rating on

a debt instrument.
10 See the appendix in Jafry and Schuermann (2003) for details and an illustration.
11 The L1 metric is used in Israel et al. (2001) for comparing migration matrices while the L2 metric is

used in Bangia et al. (2002).
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Although appealing in their simplicity, these methods offer no absolute measure

for an individual matrix: they only provide a relative comparison between two matri-

ces. For example, if the Euclidean distance between two matrices turns out to be, say,

0.1, it is not clear if this is a ‘‘large’’ or a ‘‘small’’ distance, nor is it possible to infer

which matrix is the ‘‘larger’’ of the two.

2.5.2. Eigenvalue-based metrics

The mobility indices presented in GMZ for general transition matrices are all, in

essence, based on the eigenvalues of P. They can be summarized as follows:

MPðPÞ ¼
1

N � 1
ðN � trðPÞÞ;

MDðPÞ ¼ 1� j detðPÞj;

MEðPÞ ¼
1

N � 1
N �

XN
i¼1

jkiðPÞj
 !

;

M2ðPÞ ¼ 1� jk2ðPÞj;

ð2:7Þ

where tr(. . .) denotes the trace of the matrix (i.e. the sum of its diagonal elements),

det(. . .) denotes the determinant, and ki(. . .) denotes the ith eigenvalue (arranged in

the sequence from largest to smallest absolute value, with k2 denoting the largest less

than unity). Note that when all the eigenvalues of P are real and non-negative, MP is

identical to ME since the trace equals the sum of the eigenvalues.

2.5.3. Eigenvector distance metric

Since credit migration matrices incorporate an absorbing state, they will have

identical steady-state solutions (i.e. given by the absorbing state vector itself), mean-

ing that the steady-state solution, or, equivalently, the first eigenvector of (the trans-

pose of) the migration matrix is ineffective as a basis for comparing matrices. The

remaining eigenvectors do, however, contain useful information which can be used

to construct a relative metric. AGL propose to assess the similarity of all eigenvec-

tors between two matrices by computing a (scalar) ratio of matrix norms. Specifi-
cally, their approach is motivated by the need to compare migration matrices with

different horizons (i.e. sample intervals, Dt) and test the first-order Markov assump-

tion, but the mathematics are equally valid for comparing two different transition

matrices over the same horizon:

DMAGLðPA;PBÞ ,
kPAPB � PBPAk
kPAk 
 kPBk

; ð2:8Þ

where for a vector x, ixi denotes the length of the vector.

This quantity is bounded between zero and two; it is equal to zero if PA and PB

have exactly the same eigenvectors (regardless of their eigenvalues), and it increases

the more dissimilar the eigenvectors become. AGL conclude that values for the met-

ric DMAGL of around 0.08 at an annual frequency are sufficiently small to suggest

that the eigenvectors vary by only small amounts and can thus assumed to be similar.
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However, they do not tell us why 0.08 is sufficiently small, nor do they account for

estimation noise.
3. Devising a new metric

3.1. Performance criteria

GMZ (elaborating on the work of Shorrocks, 1978) present a set of criteria by

which the performance of a proposed metric (for arbitrary transition matrices)

should be judged. These are grouped in three distinct areas: persistence criteria which

stipulate that a metric should be consistent with some simple, intuitively appealing

interpretations of the transition matrix P; convergence criteria which stipulate that
a metric ought to establish an ordering among transition matrices P that is consistent

with the rate at which the multiperiod transition matrices Pk converge to the limiting

transition matrix P�; and temporal aggregation criteria which remove the influence of

the length of the basic time period (Dt) on comparisons of mobility.

Of the persistence criteria, monotonicity (M) stipulates that M(P) > M(P*) if

pij P p�ij for all i 6¼ j and pij > p�ij for some i 6¼ j. Imposing, without loss of generality,

that M(I) = 0 (i.e. metric is zero if the matrix implies zero mobility), then the crite-

rion of immobility (I) stipulates M(P) P 0, and under strong immobility (SI)
M(P) P 0 unless P = I.

Of the convergence criteria, perfect mobility (PM) requires that M(P�) P M(P)

for all P, and strong perfect mobility (SPM) requires that the inequality be strict un-

less P = P�.

Of the temporal aggregation criteria, period consistency (PC) is based on the idea

that the comparisons of rates of convergence should not be reversed by changes in

Dt, which implies that if P and P* are two transition matrices and M(P) P M(P*),

then M(Pk) P M(P*k) for all integers k > 0.
For the class of transition matrices with real non-negative eigenvalues, GMZ

show that all the criteria are logically consistent, implying that it should be possible,

in principle, to construct a class of mobility indices which satisfy all criteria. That

said, the authors do not claim that the particular mobility indices which they then

proceed to present (summarized in Eq. (2.7)), do, in fact, satisfy all the criteria, even

for the limited class of matrices considered; see GMZ for examples. Moreover, for

general matrices (which may violate the real non-negative eigenvalue restriction),

the criteria are logically inconsistent across the persistence and convergence
categories.

Credit migration matrices are generally diagonally dominant, and so the non-

unity eigenvalues are rather close to unity in magnitude, which in turn implies that

the decay rates towards steady-state are generally rather slow (see also Section 2.3, in

particular, Eq. (2.5)). We therefore contend that it is appropriate to ignore the

requirements of meeting the convergence criteria. We likewise neglect the temporal

aggregation criteria because we are most often concerned with comparing credit

migration matrices evaluated for a fixed Dt (e.g. one year) considerably shorter than



2612 Y. Jafry, T. Schuermann / Journal of Banking & Finance 28 (2004) 2603–2639
the natural decay-time of the system. We therefore focus on the persistence criteria

only, 12 thereby removing the logical inconsistencies of attempting to satisfy all

categories.

As an additional persistence criterion, our metric is required to be distribution dis-

criminatory (DD), such that it can discriminate matrices having the same rowwise
probabilities of change but different distributions across each row. Specifically, for

pii ¼ p�ii, if pij 6¼ p�ij for all j 6¼ i, then M(P) 6¼ M(P*). For example, consider the fol-

lowing two matrices:

P1 ¼
0:8 0:1 0:1

0:2 0:7 0:1

0:3 0:1 0:6

0B@
1CA; P2 ¼

0:8 0:2 0

0:3 0:7 0

0:4 0 0:6

0B@
1CA: ð3:1Þ

A ‘‘good’’ metric should satisfy DD, i.e. it should yield different values for these

two matrices. By contrast, as demonstrated in Appendix A.3, none of the eigenvalue-
based metrics in Eq. (2.7) makes a distinction between these matrices. To be able to

make such a distinction is important in the context of credit migration matrices (and

may be important more broadly) since far migrations have different economic and

financial meaning than near migrations. The most obvious example is migration

to the Default state (typically the last column) which clearly has a different impact

than migration of just one grade down (i.e. one off the diagonal).

3.2. Subtraction of the identity matrix

Since the migration matrix, by definition, determines quantitatively how a given

state vector (or probability distribution) will migrate from one epoch to the next,

a central characteristic of the matrix is the amount of migration (or ‘‘mobility’’) im-

posed on the state vector from one epoch to the next. We can highlight this charac-

teristic by simply subtracting the identity matrix before proceeding with further

manipulations. This apparently trivial observation turns out to be key. The identity

matrix (of the same order as the state vector) corresponds to a static migration ma-
trix, i.e. the state vector is unchanged by the action of the matrix from one epoch to

the next. Subtracting the identity matrix from the migration matrix leaves only the

dynamic part of the original matrix, which reflects the ‘‘magnitude’’ of the matrix

in terms of the implied mobility. By definition, the metric will satisfy SI. Note that

the metrics in GMZ (Eq. (2.7)) have been constructed such that they also satisfy SI.
However, we will go a step further by subtracting the identity matrix before comput-

ing the metric, in contrast to GMZ where all the metrics are computed directly on P.

We will henceforth refer to the mobility matrix (denoted eP) defined as the original
(hereafter referred to as the raw) matrix minus the identity matrix (of the same

dimension), i.e.eP , P � I: ð3:2Þ
12 This does not mean to say that our proposed metric will not satisfy the convergence and temporal

aggregation criteria, but simply that we do not explicitly impose these criteria when devising the metric.
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Our task now is to devise a metric based on manipulations of the mobility matrixeP which satisfies the persistence criteria of M and DD with respect to the raw migra-

tion matrix P.
3.3. A metric based on singular values

Recalling the state equation, x(k + 1) = x(k)P, and substituting Eq. (3.2) for P, we

obtain

xðk þ 1Þ ¼ xðkÞeP þ xðkÞI:

Clearly, the greater the ‘‘magnitude’’ of eP, the greater the degree of migration ap-

plied to the state vector (and likewise, a zero value for eP implies zero migration).

Therefore, for our metric to satisfy M and DD with respect to P, we need to capture

the ‘‘magnitude’’ of eP with regard to its ‘‘amplifying power’’ on x. This is precisely

the question posed when defining the norm for a given matrix, as described in Strang

(1988, p. 366), whereby the norm of given matrix A (or equivalently of A 0) is the sca-

lar quantity defined by

kAk ¼ max
x6¼0

kAxk
kxk ð3:3Þ

such that iAi bounds the ‘‘amplifying power’’ of the matrix: iAxi 6 iAiixi for all

column-vectors x (or ix 0A 0i 6 iA 0iix 0i for all row-vectors x 0).

The equality holds for at least one non-zero x (representing the specific direc-

tion(s) in which the amplification is maximized). Again following Strang (1988, p.
368), the solution for the norm is the largest singular value of A, which, in turn, is

identically given by the square-root of the largest eigenvalue of A 0A. The vector

which is amplified the most is given by the eigenvector of A 0A corresponding to

the maximum eigenvalue. However, this maximally amplified vector is generally

not representative of a feasible state vector.

So, rather than using just the maximum singular value (as prescribed by the ma-

trix norm), we now propose to use the average of all of the singular values of eP. By

incorporating all the singular values, we can hope to capture the general character-
istics of eP acting on a feasible state vector.

In summary we propose a metric defined as the average of the singular values of the

mobility matrix, i.e.

MSVDðPÞ ,
PN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kiðeP0ePÞ

q
N

: ð3:4Þ

Note that we have not proven that this metric satisfies M and DD; such proofs are
beyond the scope of this paper. We will rather verify by example in the following

sections.
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3.4. Calibrating the metric

In this section, we provide an intuitively appealing ‘‘calibration’’ for the magni-

tude of the metric which is independent of N, the dimension (number of rating cat-

egories) of the migration matrix. In this way we can provide meaningful answers to
questions such as ‘‘supposing the metric for a given matrix has a value of, say 0.1,

what does this tell us about the matrix?’’

In order to calibrate the metric, we introduce a hypothetical ‘‘average’’ migration

matrix, denoted Pavg, which has been devised such that all diagonal elements are

equal to (1 � p) and all off-diagonal elements are equal to p/(N � 1), where p repre-

sents the probability that a given state will undergo a migration (to any of the others)

under the action of Pavg:

Pavg ,

1� p p=ðN � 1Þ . .
.

p=ðN � 1Þ 1� p p=ðN � 1Þ . .
.

. .
.

p=ðN � 1Þ 1� p p=ðN � 1Þ . .
.

. .
.

p=ðN � 1Þ 1� p . .
.

. .
. . .

. . .
.

0BBBBBBBBBBB@

1CCCCCCCCCCCA
: ð3:5Þ

Although not representative of a real migration matrix, Pavg captures the qualita-

tive attributes of an ‘‘average’’ migration matrix in that a given state has probability

p of undergoing a migration.
The question of calibration now reduces to the following: ‘‘how does the value of

our metric for an arbitrary test matrix relate to the value for a hypothetical Pavg of

the same dimension?’’ thereby indicating intuitively the ‘‘average amount of migra-

tion’’ contained in the test matrix.

As derived in Appendix A.2, the MSVD metric applied to Pavg yields the following

exact result:

MSVDðPavgÞ ¼ p; ð3:6Þ
which states that our average singular value metric is numerically identical to the
average probability of migration, p, for the hypothetical average matrix Pavg, irre-

spective of dimension N.

To return to our previous hypothetical question, if the value of the singular value

metric for a given arbitrary test matrix is, say 0.1, then we can now say that the ma-

trix has an effective average probability of migration of 0.1. 13
13 Note that this will generally be numerically different to the average probability of migration

computed directly from the diagonal elements of a given empirical matrix. This latter quantity is, in fact,

exactly equal to Mdev in Eq. (3.8).
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3.5. Mobility metrics compared

Recall that our singular value metric has been developed intuitively from the prin-

ciples underlying the idea of the matrix norm which captures the essence of the

‘‘amplifying power’’ of the dynamic part of the migration matrix. The development
rests on the key idea of first subtracting the identity matrix (to yield the dynamic

part).

For comparison, we can also evaluate the absolute deviation and Euclidean dis-

tance metrics between P and I, yielding respectively (from Eq. (2.6)):

ML1ðP; IÞ ,
PN

i¼1

PN
j¼1jPi;j � Ii;jj
N 2

;

ML2ðP; IÞ ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

PN
j¼1ðPi;j � Ii;jÞ2

q
N 2

:

ð3:7Þ

We can ‘‘calibrate’’ these metrics against Pavg in order to provide meaningful
comparisons of magnitude with our singular value metric. Specifically, evaluating

the metrics between Pavg and I, yields the following exact results:

ML1ðPavg; IÞ ,
PN

i¼1

PN
j¼1jPavg;i;j � Ii;jj

N 2
� 2p

N
;

ML2ðPavg; IÞ ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

PN
j¼1ðPavg;i;j � Ii;jÞ2

q
N 2

� p

N
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p :

We can use the denominators of these results as modifying scale-factors on the

respective metrics (relative to I) in order to yield the same numerical results as with

the singular value metric applied to Pavg. In other words, we propose modified abso-

lute deviation (L1) and Euclidean (L2) metrics, defined as follows:

MdevðPÞ ,
PN

i¼1

PN
j¼1jPi;j � Ii;jj
2N

;

M eucðPÞ ,
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

XN
j¼1

ðPi;j � Ii;jÞ2
vuut :

ð3:8Þ

It is straightforward to show that since each row of P must sum to unity, the

quantity represented by Mdev is exactly equal to the average (across all rows) of

the sum of the off-diagonal elements (per row) of P. Equivalently, Mdev is exactly

equal to (N � 1) multiplied by the average of all off-diagonal elements of P. This

averaging effect of Mdev smoothes out the differences in the off-diagonal content,

thereby potentially violating DD and diminishing the usefulness of Mdev as a met-

ric for comparing matrices with generally different off-diagonal distributions. The

same applies for the metrics based on the eigenvalues of P, as we will now
demonstrate.
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Let us compare Mdev and Meuc with MSVD and with the eigenvalue-based metrics

in Eq. (2.7). For example, for the general 2-d matrix in Eq. (2.3) the closed-form

expressions for the respective metrics are given by

MSVD ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 þ p22

q
; M euc ¼

1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 þ p22

q
; Mdev ¼

1

2
ðp1 þ p2Þ;

MP ¼ MD ¼ ME ¼ M2 ¼ p1 þ p2:

It is clear that all metrics satisfy M and DD for this general 2-d case since any
increase p1 or p2 will yield a larger M, thereby satisfying M, and any change in p1
or p2 will yield a different M, thereby satisfying DD, except for the special cir-

cumstance when either of p1 or p2 increases by the same amount as the other

decreases.

Note that MSVD and Meuc are identical for this general 2-d case, and, moreover,

are sensitive to the square of each off-diagonal element, such that the largest off-diag-

onal element will dominate the result. By contrast, MP, MD, ME and M2 which are

all identical for this general 2-d case, and differ from Mdev by only a constant scale-
factor, are sensitive to the linear sum of the off-diagonal elements, which, in effect,

means they are sensitive to the sum of the diagonal terms.

Consider now a (not completely general) 3-d example:

P ¼
1� p1 p1 0

0 1� p2 p2
0 p3 1� p3

0B@
1CA:

The exact expressions for the respective metrics are given by (recalling the MSVD

result from Eq. (A.3) in Appendix A)

MSVD ¼
ffiffiffi
2

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 þ p22 þ p23 þ p1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðp22 þ p23Þ

qr
; M euc ¼

2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 þ p22 þ p23

q
;

Mdev ¼
1

3
ðp1 þ p2 þ p3Þ; MP ¼ 1

2
ðp1 þ p2 þ p3Þ;

MD ¼ 1� jð1� p1Þð1� ðp2 þ p3ÞÞj
¼ ðp1 þ p2 þ p3Þ � p1ðp2 þ p3Þ for small p1; p2; p3;

ME ¼ 1

2
ð1þ p1 � j1� ðp2 þ p3ÞjÞ

¼ 1

2
ðp1 þ p2 þ p3Þ for small p1; p2; p3;

M2 ¼ 1�maxfj1� ðp2 þ p3Þj; j1� p1jg
¼ minfðp2 þ p3Þ; p1g for small p1; p2; p3:

ð3:9Þ

MSVD andMeuc are sensitive to the squares of each off-diagonal term and are thereby

dominated by the largest off-diagonal terms. Although MSVD and Meuc are not gen-
erally identical, they are structurally similar. Notice that MSVD includes the familiar
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‘‘sum of squares’’ of Meuc but has additional ‘‘cross-coupling’’ between p1, p2 and p1,

p3. Without these additional terms, Meuc cannot satisfy the DD criterion.

Likewise, Mdev, MP, MD, ME and M2, though no longer identical, are structurally

similar to one another – especially for small p1, p2, p3 in which case the absolute-

value delimiters in MD, ME, and M2 can be eliminated, yielding simpler expressions.
Moreover, to first order, Mdev, MP, MD and ME are again sensitive to the linear sum

of the off-diagonal terms, i.e. in effect, to the sum of the diagonal terms. M2 is an

exception, since, by definition, it uses only one of the eigenvalues and hence encap-

sulates limited information compared with the others.

The sensitivity of MSVD and Meuc to the squares of the off-diagonal terms (and

Mdev, MP, MD, ME and M2 to their linear sum) naturally extends to higher orders.

An important consequence is that MSVD and Meuc generally satisfy DD, since by de-

sign, they ‘‘seek out’’ and amplify the off-diagonal terms of P. By contrast,Mdev,MP,
MD, ME and M2 ‘‘seek out’’ and amplify the diagonal terms of P which are generally

of less interest for credit migration matrices.

We therefore expect to favor MSVD (and Meuc) for comparing credit migration

matrices since they are particularly sensitive to off-diagonal concentrations – which

are of economic interest, particularly if they occur in the Default column. This expec-

tation is borne out in the next section when we consider 8-d migration matrices from

real data. Also, see Appendix A.3, where we present some numerical comparisons on

low-order matrices.
4. Estimating migration matrices

Now that we have established how one might compare a set of migration matri-

ces, we proceed with a discussion of how to estimate these matrices using firm credit

rating histories. We then go on to apply the metrics to actual migration matrices.

4.1. Cohort approach

The method which has become the industry standard is the straight forward co-

hort approach. Let pij(Dt) be the probability of migrating from grade i to j over hori-

zon (or sampling interval) Dt. E.g. for Dt = 1 year, there are ni firms in rating

category i at the beginning of the year, and nij migrated to grade j by year-end.

An estimate of the transition probability pij (Dt = 1 year) is pij ¼
nij
ni
. Typically firms

whose ratings were withdrawn or migrated to Not Rated (NR) status are removed
from the sample. 14 The probability estimate is the simple proportion of firms at

the end of the period, say at the end of the year for an annual matrix, with rating

j having started out with rating i.
14 The method which has emerged as an industry standard treats transitions to NR as non-informative.

The probability of transitions to NR is distributed among all states in proportion to their values. This is

achieved by gradually eliminating companies whose ratings are withdrawn. We use this method, which

appears sensible and allows for easy comparisons to other studies.
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Any rating change activity which occurs within the period is ignored, unfortu-

nately. As we show below, there are other reasons to be skeptical of the cohort

method providing an accurate and efficient estimate of the migration matrix. Since

it is an industry standard, a statistical assessment seems crucial.

4.2. Duration or hazard rate approach (transition intensities)

One may draw parallels between ratings histories of firms and other time-to-event

data such (un)employment histories and clinical trials involving treatment and re-

sponse. In all cases one follows ‘‘patients’’ (be they people or firms) over time as they

move from one state (e.g. ‘‘sick’’) to another (e.g. ‘‘healthy’’). Two other key aspects

are found in credit rating histories: (right) censoring where we do not know what

happens to the firm after the sample window closes (e.g. does it default right away
or does it live on until the present) and (left) truncation where firms only enter sample

if they have either survived long enough or have received a rating. Both of these

issues are ignored in the cohort method.

A rich literature and set of tools exist to address these issues, commonly grouped

under the heading of survival analysis. The classic text is Kalbfleisch and Prentice

(1980) with more recent treatments covered in Klein and Moeschberger (1997)

emphasizing applications in biology and medicine, and Lancaster (1990) who looks

at applications in economics, especially unemployment spells. For applications to
estimating credit migration matrices, see Kavvathas (2001) and Lando and Skode-

berg (2002).

The formal construct is a N-state homogeneous Markov chain where state 1 refers

to the highest rating, �AAA�, and state N is the worst, denoting default. For a time

homogeneous Markov chain, the transition probability matrix is a function of the

distance between dates (time) but not the dates themselves (i.e. where you are in

time). Accepting or relaxing the time homogeneity assumption will dictate the spe-

cific estimation method.
With the assumption of time homogeneity in place, transition probabilities can be

described via a N · N generator or intensity matrix C. 15 Following Lando and

Skodeberg (2002), the N · N transition probability matrix P(t) can be written as

PðtÞ ¼ expðCtÞ; tP 0; ð4:1Þ
where the exponential is a matrix exponential, and the entries of C satisfy

cij P 0 for i 6¼ j;

cii ¼ �
X
j6¼i

cij:
ð4:2Þ

The second expression merely states that the diagonal elements are such to ensure

that the rows sum to zero.
15 Lando and Skodeberg (2002) point out that it is only for the case of time homogeneity that one gets a

simple formulaic mapping from intensities to transition probabilities.
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We are left with the task of obtaining estimates of the elements of the generator

matrix C. The maximum likelihood estimate of cij is given by

bcij ¼ nijðT ÞR T
0
Y iðsÞds

; ð4:3Þ

where Yi(s) is the number of firms with rating i at time s, and nij(T) is the total num-

ber of transitions over the period from i to j where i 6¼ j. The denominator effectively

is the number of ‘‘firm years’’ spent in state i. Thus for a horizon of one year, even if

a firm spent only some of that time in transit, say from �AA� to �A� before ending the

year in �BBB�, that portion of time spent in �A� will contribute to the estimation of the

transition probability PAA!A. In the cohort approach this information would have

been ignored. Moreover, firms which ended the period in an �NR� status are still
counted in the denominator, at least the portion of the time which they spent in

state i.

A common assumption for credit modeling (either at the instrument or portfolio

level) is for the system to be first-order Markov. However, Carty and Fons (1993),

Altman and Kao (1992), Altman (1998), Nickell et al. (2000), Bangia et al. (2002),

Lando and Skodeberg (2002) and others have shown the presence of non-Markovian

behavior such as ratings drift, and time non-homogeneity such as sensitivity to the

business cycle. Realistically the economy (and hence the migration matrix)
will change on time-scales far shorter than required to reach the idealized Default

steady-state proscribed by an assumed constant migration matrix.

The migration matrix can also be estimated using non-parametric methods such

as the Aalen–Johansen estimator which imposes fewer assumptions on the data gen-

erating process by allowing for time non-homogeneity while fully accounting for all

movements within the sample period (or estimation horizon). 16 It is unclear, how-

ever, whether relaxing the assumption of time homogeneity results in estimated

migration matrices which are different in any meaningful way, either statistical or
economic.

We can get an early taste of the consequences of working with transition inten-

sities by looking at estimates of the probability of default for a particular rating j

(PDj) using ratings histories for US firms from S&P. For the sample range we exam-

ine, 1981–2002, no defaults within one year were observed for rating class �AAA.�
The duration approach may still yield a positive probability of default for highly

rated obligors even though no default was observed during the sampling period.

It suffices that an obligor migrated from, say, �AAA� to �AA� to �A��, and that a de-
fault occurred from �A�� to contribute probability mass to PDAAA. This can be seen

by comparing the empirical PDs (in basis points – bp) in the first three columns of

Table 2. For example, the estimated annual probability of default for an �AA� com-

pany, PDAA, is exactly zero for the cohort approach, 0.71 bp for the (parametric)
16 For details, see Aalen and Johansen (1978) and Lando and Skodeberg (2002).



Table 2

Estimated annual probabilities of default (PDs) in basis points (1981–2002), across methods

Rating categories Cohort Homogeneous Non-

homogeneous

% Cohort
Homog: %Non�homog:

Homog:

AAA 0.000 0.020 0.003 0.00% 12.88%

AA+ 0.000 0.049 0.035 0.00% 71.22%

AA 0.000 0.706 0.100 0.00% 14.16%

AA� 2.558 0.317 0.459 805.56% 144.43%

A+ 5.942 0.380 0.545 1562.18% 143.39%

A 5.576 1.024 0.952 544.54% 92.99%

A� 4.403 0.854 0.545 515.76% 63.81%

BBB+ 36.049 3.952 4.464 912.09% 112.96%

BBB 36.017 12.122 12.998 297.12% 107.22%

BBB� 45.519 17.517 22.509 259.86% 128.50%

BB+ 51.378 28.817 30.910 178.29% 107.26%

BB 126.206 49.963 50.775 252.60% 101.63%

BB� 228.637 98.704 101.291 231.64% 102.62%

B+ 363.529 198.279 211.548 183.34% 106.69%

B 1030.928 801.539 802.320 128.62% 100.10%

B 1460.674 1356.182 1371.660 107.70% 101.14%

CCCa 3092.243 4401.658 4224.314 70.25% 95.97%

S&P rated US obligors.
a Includes CC and C rated obligors.
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time homogeneous and 0.10 bp for the (non-parametric) non-homogeneous dura-

tion approach. 17 For an �A+� rated firm, PDA+ is 5.9 bp for the cohort approach

but a much smaller 0.38 and 0.55 bp for time homogeneous and non-homogeneous

duration approach respectively, meaning that the less efficient cohort method over

estimates default risk by about 10-fold. We would obtain these lower duration based

probability estimates if firms spend time in the �A+� state during the year on their
way up (down) to a higher (lower) grade from a lower (higher) grade. This would

reduce the default intensity, thereby reducing the default probability.

At the riskiest end of the spectrum, CCC-rated companies, the differences are

striking: 30.92% for the cohort method but 44.02% and 42.24% for homogeneous

and non-homogeneous duration respectively. Thus using the more popular but less

efficient cohort method would under estimate default risk by over 10% points. One

way we might see such differences is if firms spend rather little time in the �CCC� state
which would yield a small denominator in the rating intensity expression (for either
homogeneous or non-homogeneous duration) and hence a higher default

probability. 18
17 Brand and Bahar (2001) report non-zero PDs for high grades by smoothing and extrapolating S&P

default experiences.
18 Frydman (2003) estimates Markov mixture models and finds evidence of a two-regime process. The

results for �CCC� are especially interesting as they suggest that firms starting in �CCC� are much less likely

to default than firms downgraded to �CCC�.
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4.3. Bootstrapping

The estimates of the transition matrices are just that: estimates with error (or

noise). Let bPa be an estimate of the migration matrix P using method a; consequently

we may denote
bePa ¼ bPa � I to be an estimate of the mobility matrix (see (3.2)). Then

distance metrics such as SVD-based DMSVDðbeP a;
beP bÞ , MSVDðbeP aÞ �MSVDðbeP bÞ are

also noisy. In order to help us answer the question ‘‘how large is large’’ for a distance

metric such as DMSVDðbeP a;
beP bÞ, we need its distributional properties. In the absence

of any asymptotic theory a straightforward and efficient way is through the resam-

pling technique of bootstrapping.

Consider, for example,
beP cohðtÞ and bePhomðtÞ as the cohort and homogeneous dura-

tion estimates at time t respectively, obtained using nt observations.
19 Suppose we

create k bootstrap samples 20 of size nt each so that we can compute a set of R dif-

ferences based on singular values, fDM ðjÞ
SVDð

beP cohðtÞ; bePhomðtÞÞgRj¼1 where j = 1, . . . ,R
denotes the number of bootstrap replications. This will give us a bootstrap distribu-

tion of singular value based distances. For a chosen critical value a (say a = 5%), we

see if 0 falls within the 1 � a range of fDM ðjÞ
SVDð

beP cohðtÞ; bePhomðtÞÞgRj¼1 for some rela-

tively large R (�1000). 21

Ideal conditions for the bootstrap require that the underlying data is a random

sample from a given population. Specifically the data should be independently and

identically distributed (iid). Broadly one may think of at least two sources of heter-

ogeneity: cross-sectional and temporal. It is difficult to impose temporal independ-

ence across multiple years, but easier at shorter horizons such as one year. We
will still be subject to the effects of a common (macro-economic) factor, but this

problem can be mitigated by focusing the analysis on either expansion or recession

years only. 22 We will come back to this particular issue in Section 5.2. Sources of

cross-sectional heterogeneity may be country, type of entity (corporation, gov-

ernment), and for corporations, industry. Nickell et al. (2000) document that for

corporations, country of domicile and industry influence ratings migration
19 To be sure, with the presence of transitions to NR, the number of observations is not identical for the

two methods: the cohort method drops them, the duration methods do not.
20 A bootstrap sample is created by sampling with replacement from the original sample. For an

excellent exposition of bootstrap methods, see Efron and Tibshirani (1993).
21 Efron and Tibshirani (1993) suggest that for obtaining standard errors of bootstrapped statistics,

bootstrap replications of 200 are sufficient. For confidence intervals, they suggest bootstrap replications of

1000 which we employ. Andrews and Buchinsky (1997) explore the impact of non-normality on the

number of bootstraps. With multimodality and fat tails the number of bootstrap replications often must

increases 2- or 3-fold relative to the Efron and Tibshirani benchmarks. For several cases we increased R to

3000 and found no meaningful evidence of non-normality: all densities were unimodal with average

kurtosis around 3.2, ranging from 2.8 to 6.4. In fact the bootstrap distributions of DMSVD were

surprisingly close to normal.
22 Similarly Christensen et al. (2004) perform their bootstrap simulations by dividing their sample into

multiyear ‘‘stable’’ and ‘‘volatile’’ periods. See also Lopez and Saidenberg (2000) for a related discussion

on evaluating credit models.
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persistence (momentum). We are able to control for some but not all of these factors.

We restrict our analysis to US firms, i.e. no government entities (municipal, state or

sovereign), and no non-US entities, but do not perform separate analysis by industry

largely for reasons of sample size. By mixing industries together, the resulting boot-

strap samples will likely be noisier than they would be otherwise, biasing the analysis
against finding differences. 23
5. Empirical results

Our data set of S&P ratings histories, CreditPro V. 6.2, is very similar to the

data used in Bangia et al. (2002) but covers an additional four years: the total sam-

ple ranges from January 1, 1981 to December 31, 2002. The universe of obligors is
mainly large corporate institutions around the world. Ratings for sovereigns and

municipals are not included, leaving the total number of unique obligors to be

9929. The share of the most dominant region in the data set, North America,

has steadily decreased from 98% to 60%, as a result of increased coverage of com-

panies domiciled outside US. The database has a total of 60,133 obligor years of

data, excluding withdrawn ratings, of which 1059 ended in default yielding an aver-

age default rate of 1.76% for the entire sample. For our analysis we will restrict

ourselves to US obligors only; there are 6776 unique US domiciled obligors in
the sample.

5.1. Comparing the metrics

To illustrate the empirical applications of the metrics proposed here, we first com-

pare the annual (Dt = 1 year) migration matrices estimated via the parametric (time

homogeneous) duration method for the years 1981–2002, and then compare each

annual matrix to the average matrix.
We obtain 22 matrices for each migration estimation method. Fig. 1 contains the

various metrics computed for the homogeneous matrices. It is apparent that all the

metrics except for M2 are highly correlated, consistent with them satisfying M for

the matrices in question. Actual correlations bear this out, with Mdev, MP and ME

being perfectly correlated since the metrics differ only by constant scale-factors. It

is also clear from Fig. 1 that MSVD, Mdev, MP and ME have roughly the same magn-

itudes whereas M2 is consistently smaller (because the matrices are diagonally dom-

inant with second eigenvalues close to unity); Meuc, is consistently larger; and MD is
consistently significantly larger.

Focusing our attention just on MSVD we compare the ‘‘size’’ of the migration

matrices across the different estimation methods. In Fig. 2 we can clearly see that

matrices have been getting ‘‘larger’’ since the mid-1990s and that they tend to
23 To be sure, the methodology could be used to actually test whether mixing across industries matters,

once country of domicile and economic regime are controlled for.
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Fig. 1. Comparison of matrix metrics: S&P, US, 1981–2002, using the duration based (time homogeneous)

method. Metrics are defined in Eq. (2.7) for MD, ME, MP and M2, Eq. (3.4) for MSVD, and Eq. (3.8) for

Meuc and Mdev. Shaded areas correspond to NBER recession periods.
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increase leading up to and during recessions. The most recent year available, 2002,

has generated the ‘‘largest’’ migration matrix. Moreover, the matrices estimated with

the cohort method tend to be ‘‘smaller’’ than the duration matrices, and this differ-

ence seems to be increasing recently. Relaxing time homogeneity appears to have

only a very small effect. These casual observations are borne out using bootstrap
methods in Section 5.2 below.

Despite having 22 years of migration data with nearly 6800 unique US obligors,

not all cells of a single-year migration matrix are estimated with high precision; the

further away from the diagonal, the fewer observations. Most of the migrations are

of one to two grades. As a result, practical applications of migration matrices tend to

make use of longer time spans or averages over the entire sample range. 24 But how

different are particular years from that long-run average? Fig. 3 depicts the deviation

of each annual migration matrix (Phom) from the full-sample (long-run average) ma-
trix (Phom) using the more efficient homogeneous duration estimation method. Spe-

cifically, the quantity plotted is given by (for each year) DMSVDðePhomðtÞ; ePhomÞ. The
metric reveals that the amount of variation over time is substantial, with migration
24 This is sometimes called the unconditional migration matrix in that it does not condition on, say,

a particular year or point in the business cycle.
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matrices in the last three years being consistently ‘‘larger’’ than the average, and
‘‘smaller’’ for most of the 1990s. The largest positive deviation occurred in 2002,

the largest negative deviation in 1987, the latter being actually a little larger in abso-

lute value: �0.0650 vs. 0.0615. If nothing else it suggests that the underlying Markov

process is unlikely to be time homogeneous.

5.2. Statistical differentiation

In this section we compare the different estimation methods using the SVD metric
MSVD on migration matrices estimated for a one-year horizon which is typical for

many risk management applications. We show that the method matters in often dra-

matic ways. The difference between the duration methods are much smaller than be-

tween cohort and duration methods, implying that using the two efficient duration

method, even with the (possibly false) assumption of time homogeneity over the co-

hort method has a far greater impact than relaxing the time homogeneity

assumption.

In Fig. 4 we display DMSVD of the cohort and non-homogeneous duration relative
to the homogeneous duration. It is apparent that the difference between cohort-

based and homogeneous duration-based matrices (dashed line) are larger than the
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differences of the two variations of the duration method (solid line). Moreover, the

migration matrices estimated non-parametrically (i.e. allowing for time non-homo-
geneity) are typically larger than the parametric duration estimates (the solid line

is typically in positive territory), while the cohort matrices appear to be the smallest

(the dashed line is typically in negative territory, especially in the last 7–8 years of the

sample). Duration-based migration matrices estimated non-parametrically exhibit

more mobility than cohort-based matrices.

The largest difference between cohort and homogeneous duration methods occurs

in 2002 while the smallest difference is found in 1984. In absolute value, its minimum

occurs in 1984 (0.00094) and its maximum in 2002 (�0.03516). Is either different
from zero, meaning do the two methods generate statistically indistinguishable tran-

sition matrices? Table 3 (left column) provides some summary statistics of the boot-

strap, including several quantiles. Indeed we are unable to reject that the 1984

matrices are different (0 is near the median) but can do so for the 2002 matrices:

the 98% confidence interval from the 1st to the 99th percentile is (�0.05144,

�0.01931).

Moving on to the comparison of the parametric vs. non-parametric estimation

of the duration-based matrices, we see that the largest difference, in absolute
value, occurs in 1982 (0.01082), and the smallest in 1987 (0.00026). The minimum

difference between cohort and homogeneous duration occurs in 1984, a year where
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the difference between the two duration methods is also quite small:�0.00186. Table 3
(right panel) shows the bootstrap results for 1987 (min difference) and 1982 (max dif-

ference). Even for the year of maximum difference between duration methods, namely

1982, we are unable to reject the hypothesis that the difference is zero. The 98% con-

fidence interval from the 1st to the 99th percentile is (�0.00174, 0.03892). For 1987 the

zero is contained already in the 90% confidence interval (�0.00059, 0.00120).

Bootstrapping requires that the underlying data not exhibit dependence and come

from the same distribution. An obvious source of heterogeneity for credit migrations

are business cycle regimes. Thus years where the economy moved from expansion to
recession or vice versa will result in a mixture of regimes and cast some doubt on the

bootstrap results. This is the case for 1982, the maximum DMSVD (at 0.01082) be-

tween parametric and non-parametric estimates of migration matrices. To assess

the robustness of those results, we took the next largest (in absolute value) DMSVD

year, 1986 (at �0.00585) which was not a transition year (it was, in fact, an expan-

sion year) and repeated the bootstrap exercise. The results did not change. We can-

not reject the null of no difference; zero is easily contained in the 90% confidence

interval which is (�0.01563, 0.00618).
The bootstraps for the non-parametric method are extremely computationally

intensive, but not so for the other two methods. Thus in Fig. 5 we can display the

95% confidence band for DMSVD between the cohort and parametric duration



Table 3

Bootstrapped SVDs: DMSVDðbeP coh;
bePhomÞ, DMSVDðbePnon�h;

bePhomÞ, (R = 1000)

Stats Cohort � homogeneous

duration

Non-homogeneous � homogeneous duration

1984 (min) 2002 (max) 1987 (min) 1982 (max) 1986 (second largest)bM SVD 0.00094 �0.03516 0.00026 0.01082 �0.00585

Mean 0.00103 �0.03491 0.00030 0.01071 �0.00535

Std. dev. 0.00910 0.00701 0.00059 0.00834 0.00686

Q1 �0.02546 �0.05144 �0.00121 �0.00174 �0.02082

Q5 �0.01500 �0.04648 �0.00059 0.00037 �0.01563

Q50 0.00225 �0.03491 0.00029 0.00916 �0.00580

Q95 0.01329 �0.02338 0.00120 0.02599 0.00618

Q99 0.01679 �0.01931 0.00164 0.03829 0.01294

Quantiles from bootstrapping the SVD-based distance metric using S&P rated US obligors, 1981–2002.

Zero is contained in each confidence interval except for cohort minus homogeneous duration in 2002

which is the maximum difference between the two methods.
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method for each year over the entire sample period. Zero lies inside the band for

much of the 1980s and outside it for the last four years.

What becomes clear is that the differences (in SVD terms) between the duration

methods are much smaller than between cohort and duration methods, 25 implying

that using the efficient duration method, even with the (possibly false) assumption of

time homogeneity, over the cohort method has a far greater impact than relaxing the

time homogeneity assumption. The smoothing imposed by the parametric maximum

likelihood estimator (4.3) appears to be modest. In Table 4 we make a formal com-
parison of means between the different methods. The mean absolute difference be-

tween the cohort and the homogeneous duration, DMSVDðbeP coh;
bePhomÞ, is 0.0149,

the mean absolute difference between cohort and non-homogeneous duration,

DMSVDðbeP coh;
bePn�homÞ, is 0.0143, while the mean difference of the two duration meth-

ods DMSVDðbePn�hom;
bePhomÞ is a much smaller 0.0024. Indeed we cannot reject that the

mean absolute difference between the cohort and either duration method is different

(from zero) with a p-value of 0.33, but we can do so for the difference between cohort

and either duration method and the average difference between the two duration

methods. We show one of them in Table 4 (the other test yields the same result),

where the p-value is <0.001, allowing us to strongly reject that the two mean absolute

differences are the same.
The degree of divergence between the cohort and either duration method is obvi-

ously a function of the time horizon over which the migration matrices are estimated.

The longer that horizon, the more migration potential there is. Hence we would ex-

pect these differences to be smaller for shorter horizons such as semi-annually or

quarterly. Our focus is on the one-year horizon as that is typical for many credit

applications.
25 These results confirm a conjecture in Lando and Skodeberg (2002).



-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002
∆

M
SV

D

Fig. 5. Bootstrapped 95% confidence bands of DMSVDðbeP coh;
bePhomÞ, assessing the difference between

cohort and homogeneous duration estimation methods for each yearly migration matrix. S&P, US, 1981–

2002. Shaded areas correspond to NBER recession periods.

Table 4

Difference in mean absolute differences of MSVD between methods: DMSVDðbeP coh;
bePhomÞ,

DMSVDðbeP coh;
bePn�homÞ, DMSVDðbePn�hom;

bePhomÞ

Cohort � homog.

duration

Cohort � non-homog.

duration

Cohort � homog.

duration

Non-homog. � homog.

duration

Mean 0.0149 0.0143 0.0149 0.0024

Std. dev. 0.0107 0.0118 0.0107 0.0025

Dmean 0.0125 0.0006

F(Dmean = 0) 0.824 18.938

Pr(F 6 f) 0.330 <0.001

F-test assumes different variances. MSVD estimated for each method for S&P rated US obligors, 1981–

2002.
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5.3. Economic relevance: Credit risk capital

The statistical difference between two empirically estimated transition matrices

may not translate to economic significance. As an illustration we look at credit risk
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capital levels implied by credit portfolio models which are used to generate value dis-

tributions of a portfolio of credit assets such as loans or bonds. 26

The purpose of capital for a financial institution is to provide a cushion against

losses. The amount of economic capital is commensurate with the risk appetite of

the financial institution. This boils down to choosing a confidence level in the loss
(or value change) distribution of the institution with which senior management is

comfortable. For instance, if the bank wishes to have an annual survival probability

of 99%, this will require less capital than a survival probability of 99.9%, the latter

being typical for a regional bank (commensurate with a rating of about A�/BBB+).

The loss (or value change) distribution is arrived at through internal credit portfolio

models.

There are a variety of models which can be used to compute economic risk cap-

ital for a given portfolio of credit assets. 27 Consider now an example using one of
the popular credit portfolio models, CreditMetrics�, where a cardinal input is

the grade migration matrix as it describes the evolution of the portfolio�s credit

quality.

In an exercise similar to Bangia et al. (2002), we constructed a fictitious bond

portfolio with 400 exposures with a current value of $415.9 MM. We did so by tak-

ing a random sample of rated US corporates that mimics the ratings distribution of

the S&P US universe as of December 2002 in such a way that we have at least one

obligor for each major industry group. Maturity ranges from 1 to 30 years, and inter-
est is paid semi-annually or annually. We use preset mean recovery rates and their

standard deviations from Altman and Kishore (1996) and take the yield curves

and credit spreads as of August 1, 2003. We then ask the question: what is the port-

folio value distribution one year hence using different transition matrices but leaving

all other parameters 28 unchanged?

We summarize our findings in Tables 5 and 6. Three sets of numbers are dis-

played for each experiment: the standard deviation of horizon value (i.e. portfolio

value one year hence) and VaR (value-at-risk) at 99% and 99.9%, the former
being an oft-seen standard and the latter roughly corresponding to the default

probability commensurate with an A�/BBB+ rating. The top panel of Table 5

compares the impact of business cycles, namely recession to expansion, which

was shown in Bangia et al. (2002) to generate significant differences in risk capi-

tal. 29 We estimate the homogeneous duration matrices over the relevant sub-sam-

ple periods.
26 For an application to credit derivatives, see Schuermann and Jafry (2003).
27 For a review and comparison of many of these models, see Koyluoglu and Hickman (1998), Gordy

(2000) and Saunders and Allen (2002).
28 Parameters such as those governing the recovery process. For each scenario we generated 5000 trials

using importance sampling.
29 We use the NBER dates for delineating expansions and recessions.



Table 5

Credit risk capital: recession vs. expansion

Recession Expansion % Recession
Expansion

Time homogeneous duration: recession vs. expansion (Dmsvd(PR,PE) = 0.0434)

Mean horizon value $392,853,876 $397,900,019 98.73%

Std. dev. of value $8,194,719 $6,706,755 122.19%

VaR (99%) $27,801,133 $22,959,290 121.09%

VaR (99.9%) $45,005,850 $38,965,277 115.50%

Cohort Homog. Non-homog. % Cohort
Homog: %Non�homog:

Homog:

1981–2002 average migration matrix by estimation method

Mean horizon value $397,694,458 $397,340,664 $396,982,381 100.09% 99.91%

Std. dev. of value $7,971,401 $6,892,581 $7,038,120 115.65% 102.11%

VaR (99%) $27,949,382 $23,646,358 $24,187,380 118.20% 102.29%

VaR (99.9%) $48,415,318 $39,927,619 $40,508,559 121.26% 101.45%

Credit risk capital as computed by CreditMetrics� using a 1-year horizon, 5000 replications (using their

importance sampling option). All input parameters save migration matrices the same across runs. The

sample portfolio is as described in Section 5.3. Recession and expansion matrices were estimated using

monthly NBER business cycle classifications (‘‘peak’’ and ‘‘trough’’ months were partitioned at the 15th of

day of the month).
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Here we broadly confirm results in Bangia et al. (2002) where capital held during a

recession should be about 20–30% higher than during an expansion (21.09% at the

99% level, 15.5% at the 99.9% level). Moreover, the portfolio volatility is about

22% higher during a recession than an expansion. 30 This difference is about the same

as the difference between the cohort and parametric duration method applied to the

overall sample annual migration matrix, as can be seen from the bottom panel of

Table 5. The capital difference for 99% VaR is about 18%, and at 99.9% VaR it is

about 21%. By contrast, whether duration method is applied parametrically or
non-parametrically makes little difference from the point of view of risk capital as

can be seen in the last column of the bottom panel of Table 5. These differences

are small, between 1.5% and 2.3%.

Although the duration method better captures the migration dynamics, and

indeed typically has higher MSVD values, the levels of capital implied by the cohort

method is typically higher: most of the ratios (cohort to duration) are larger than

100%. The reason is simple: the cohort method actually tends to overestimate default

probabilities, the last column of the migration matrix, relative to the duration meth-
ods. This is clearly seen in Table 2, where the last two columns takes the ratios of

PDs by different methods. Ignoring the first three ratings (�AAA�, �AA+� and
30 Including 2002 changes these results somewhat since 2002, while being classified as an expansion year

by the NBER, looked more like a recession year considering the default experience in debt markets.

Indeed, if we exclude 2002, then the differences are more pronounced: 24% at 99% VaR and 17% at 99.9%

VaR.



Table 6

Credit risk capital: comparing estimation methods

Cohort Homog. Non-homog. % Cohort
Homog: %Non�Homog:

Homog:

1982 (maxDMSVD for non-homog. � homog.)

Mean horizon value $396,416,966 $396,640,220 $396,301,440 99.94% 99.91%

Std. dev. of value $8,700,887 $7,915,465 $7,923,430 109.92% 100.10%

VaR (99%) $31,564,197 $28,569,182 $28,622,911 110.48% 100.19%

VaR (99.9%) $53,324,594 $48,591,410 $48,108,281 109.74% 99.01%

1984 (minDMSVD for cohort � homog.)

Mean horizon value $400,505,388 $400,731,919 $400,745,284 99.94% 100.00%

Std. dev. of value $7,063,373 $6,632,943 $6,639,106 106.49% 100.09%

VaR (99%) $24,966,449 $22,964,864 $22,982,175 108.72% 100.08%

VaR (99.9%) $42,336,742 $38,677,713 $38,939,280 109.46% 100.68%

1987 (minDMSVD for non-homog � homog.)

Mean horizon value $400,374,321 $401,102,917 $401,125,266 99.82% 100.01%

Std. dev. of value $7,067,727 $6,434,677 $6,456,697 109.84% 100.34%

VaR (99%) $24,535,519 $23,008,569 $22,907,149 106.64% 99.56%

VaR (99.9%) $39,377,615 $38,735,753 $38,582,377 101.66% 99.60%

2002 (maxDMSVD for cohort � homog.)

Mean horizon value $393,734,801 $392,943,756 $392,866,927 100.20% 99.98%

Std. dev. of value $9,829,981 $8,346,925 $8,236,980 117.77% 98.68%

VaR (99%) $35,968,475 $28,671,849 $28,406,497 125.45% 99.07%

VaR (99.9%) $60,070,064 $45,711,447 $45,180,273 131.41% 98.84%

Credit risk capital as computed by CreditMetrics� using a 1-year horizon, 5000 replications (using their

importance sampling option). All input parameters save migration matrices the same across runs. The

sample portfolio is as described in Section 5.3.
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�AA�), where the cohort estimate is identically equal to zero, the only rating category

where cohort underestimates the PD is in the last one: �CCC� (and below). 31

The previous section highlighted several years in the sample which are of partic-

ular interest. They are 1982 (max DMSVD for the two duration methods), 1984 (min

DMSVD for cohort and parametric (time homogeneous) duration), 1987 (min DMSVD

for the two duration methods) and finally 2002 (max DMSVD for cohort and para-

metric (time homogeneous) duration). Table 6 summarizes the differences in eco-

nomic capital for these years across methods. Without exception, the differences
between the cohort and more efficient duration methods are larger than between

the different duration methods, with differences of 10–30% for the former, and

always less than 2% for the latter. Viewed through the lens of credit risk capital,
31 The economic impact of a default is severe, much more so than a downgrade to some other rating.

This suggests the desirability for devising a metric which somehow captures more specific locational

aspects of the elements of the matrix, e.g. amplifying the effects of elements the closer they are to the

Default column. This is a topic of current research by the authors whereby we adopt an information-

theoretic approach to construct an alternative metric encompassing spatial gradients across the matrix.
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ignoring the efficiency gain inherent in the duration methods is more damaging that

making a (possibly false) assumption of time homogeneity.

Looking at 1982, the year where the two duration methods were most divergent,

the difference in VaR capital is larger between the cohort and the homogeneous

duration method (9–10%) than between the two duration methods themselves
(<1%). This pattern persists when we move to 1984, where the divergence between

cohort and homogeneous duration is the smallest. Even here the VaR differences

are larger for cohort and homogeneous duration (6–9%) than between duration

methods (<1%). The year 1987 is no exception.

The difference is startling when we look at the 2002, the year where we experi-

enced the largest divergence between cohort and homogeneous duration methods.

VaR differences are more than when comparing recession to expansion: 25% to over

30%.
Finally note that the differences in portfolio mean horizon value (i.e. the expected

value of the portfolio one year hence) changes little across methods. So for example,

in 2002 the difference in expected value of the portfolio between the cohort and

homogeneous duration methods is essentially nil, but the difference in risk is

substantial.
6. Conclusions

In this paper we presented several methods for measuring, estimating and com-

paring credit migration matrices. We look at three estimation methods for credit

migration matrices: a popular but inefficient approach called cohort, and two effi-

cient duration approaches, with and without the assumption of time homogeneity.

We ask three questions: (1) how would one measure the scalar difference between

these matrices; (2) how can one assess whether those differences are statistically sig-

nificant; and (3) even if the differences are statistically significant, are they econom-
ically significant?

To help answer the first question, we develop a new metric based on singular val-

ues and show that this metric approximates the average probability of migration.

The question of statistical significance is addressed using resampling methods, and

economic relevance is addressed by simulating the credit risk capital levels implied

by the credit portfolio model in CreditMetrics�. We find that indeed, the method

matters, both statistically and economically, when analyzing migration matrices esti-

mated for a one-year horizon which is typical for many risk management applica-
tions. For years where the singular value decomposition (SVD) metric is small we

cannot reject the null that they are not different; for years where the SVD metric

is large we are able to reject the null of no difference. Relaxing the time homogeneity

assumption has little impact; even at its maximum, the two methods yield statis-

tically indistinguishable migration matrices. Looking at the credit risk capital

implied by the credit portfolio model we find that the differences between the

cohort and more efficient duration methods are larger than between the different

duration methods, with differences of 15–30% for the former, and never more
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than 2% for the latter. Thus ignoring the efficiency gain inherent in the duration

methods is more damaging than making a (possibly false) assumption of time

homogeneity.

Which estimation method is the preferred one? It seems clear to us that the

cohort is certainly not preferred over the duration approach. Although there is
a lot of circumstantial evidence of time non-homogeneity of the underlying

process, allowing for this in the duration-based estimation using the non-paramet-

ric Aalen–Johansen estimator seems to have very little impact. Computationally

this non-parametric estimator is quite intensive, taking on average more than

100 times longer to compute than either the parametric duration or the cohort

method. Thus our bottom line is a preference for the parametric duration

estimator.
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Appendix A

A.1. Matrix norm: 3-d example

For example, consider a 3-d migration matrix given by

P ¼
1� p1 p1 0

0 1� p2 p2
0 p3 1� p3

0B@
1CA: ðA:1Þ

Note that this is not a completely general 3-d example (otherwise the algebra would

become unwieldy). The corresponding eP and eP0eP matrices are given by

eP ¼
�p1 p1 0

0 �p2 p2
0 p3 �p3

0B@
1CA; eP 0eP ¼

p21 �p21 0

�p21 p21 þ p22 þ p23 �ðp22 þ p23Þ
0 �ðp22 þ p23Þ p22 þ p23

0B@
1CA:
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The eigenvalues of eP0eP are given by

p21 þ p22 þ p23 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p41 þ p42 þ p43 � p21ðp22 þ p23Þ þ 2p22p

2
3

p
p21 þ p22 þ p23 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p41 þ p42 þ p43 � p21ðp22 þ p23Þ þ 2p22p

2
3

p
0

0B@
1CA: ðA:2Þ

Hence the norm of eP is given by (the square-root of the largest eigenvalue of eP0eP)

kePk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 þ p22 þ p23 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p41 þ p42 þ p43 � p21ðp22 þ p23Þ þ 2p22p

2
3

qr
:

Now, the specific vector that is maximally amplified by eP (i.e. such that

kePxmaxk ¼ kePkkxmaxk, temporarily reverting to the equivalent but more familiar

columnwise form) is in the direction (i.e. some multiple of) the eigenvector of eP0eP
corresponding to the largest eigenvalue, i.e.

xmax ¼
p21 � p22 � p23 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p41 þ p42 þ p43 � p21ðp22 þ p23Þ þ 2p22p

2
3

p
p22 þ p23 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p41 þ p42 þ p43 � p21ðp22 þ p23Þ þ 2p22p

2
3

p
1

0B@
1CA:

This maximally amplified vector is generally not representative of a feasible state
vector. For example, if p1 = p2 = p3 = 0.1, we obtain

x0
max � �0:01 0:02 1ð Þ;

which cannot correspond to a feasible direction (i.e. multiple of) a state vector since

all state vector elements must be non-negative (in line with the probability
definition).

Completing our 3-d example from (A.1), by taking the average of the square-roots

of the eigenvalues in (A.2), the closed-form expression for the metric is given by 32

MSVD ¼
ffiffiffi
2

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 þ p22 þ p23 þ p1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðp22 þ p23Þ

qr
: ðA:3Þ
A.2. Calibration of MSVD against Pavg

We present here the proof of the result stated in Eq. (3.6).

From the definition of Pavg, (Eq. (3.5)) the corresponding mobility matrix, ePavg,

can be expressed as
32 Note that for general credit migration matrices, closed-form solutions are completely intractable and

the metric must be computed numerically. This can be achieved with a single line of MATLAB� code, as

follows: m = mean(svd(P � eye(size(P)))).
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ePavg , Pavg � I � p
N � 1

�ðN � 1Þ 1 . .
.

1 �ðN � 1Þ 1 . .
.

. .
.

1 �ðN � 1Þ 1 . .
.

. .
.

1 �ðN � 1Þ . .
.

. .
. . .

. . .
.

0BBBBBBBBBBB@

1CCCCCCCCCCCA
:

The matrix product eP0eP used in the definition of the singular values is therefore gi-

ven by

eP0
avg
ePavg �

p2N

ðN �1Þ2

ðN �1Þ �1 . .
.

�1 ðN �1Þ �1 . .
.

. .
.

�1 ðN �1Þ �1 . .
.

. .
.

�1 ðN �1Þ . .
.

. .
. . .

. . .
.

0BBBBBBBBBBB@

1CCCCCCCCCCCA
,

p2N

ðN �1Þ2
Aavg:

We must now compute the eigenvalues of the matrix Aavg above. To start, note

that each column is linearly independent of any other. However, by inspection it

can be seen that the first column is equal to the sum of all the others, for all N. This

means that the rank of the matrix Aavg is equal to (N � 1), implying that exactly one
of the N eigenvalues is equal to zero (see Strang, 1988, p. 250). Now, from the prop-

erties of eigenvalues we know that the sum of the eigenvalues of any matrix is equal

to the trace of the matrix (i.e. the sum of the diagonal elements). Hence, for the ma-

trix Aavg:

k1 þ k2 þ k3 þ 
 
 
 þ kN � trðAavgÞ ¼ NðN � 1Þ

and incorporating the fact that exactly one eigenvalue equals zero (say k1 = 0, with-

out loss of generality), we obtain

k2 þ k3 þ 
 
 
 þ kN ¼ NðN � 1Þ:
This equation is satisfied identically if all the (N � 1) remaining eigenvalues are

equal to N. Consider first the 2-d case. The characteristic equation (from the deter-

minant) and the corresponding eigenvalue solutions are given by

k2 � 2k ¼ 0; k ¼ ½0; 2�:
Likewise, for the 3-d and 4-d cases, respectively:

k3 � 6k2 þ 9k ¼ 0; k ¼ ½0; 3; 3�;
k4 � 12k3 þ 48k2 � 64k ¼ 0; k ¼ ½0; 4; 4; 4�:
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Extending these findings to arbitrary order, we conclude that the remaining non-zero

eigenvalues are all equal to N. The MSVD metric applied to Pavg can therefore be

expressed as

MSVDðPavgÞ ,
PN

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kiðeP0

avg
ePavgÞ

q
N

¼ pffiffiffiffi
N

p
ðN � 1Þ

XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kiðA0

avgAavgÞ
q

¼ p
ffiffiffiffi
N

p

ðN � 1Þ
0þ ðN � 1Þ

ffiffiffiffi
N

p

N

� �
¼ p;

thereby proving the result in Eq. (3.6).

A.3. Comparisons of metrics applied to simple test matrices

As appreciated from Section 3.5, closed-form expressions for the various metrics

rapidly become unwieldy, even for third-order matrices. We will therefore consider

some numerical trials to compare the metrics.

Recall first the 3-d examples in Eq. (3.1), whereby the matrices P1 and P2 are con-

trived to have the same diagonal elements, but different off-diagonal distributions.
We demand that any proposed metric should be able to distinguish between these

matrices (i.e. should satisfy DD). The corresponding results for MSVD, Mdev, Meuc,

MP, MD, ME and M2 are given by

MSVDðP1Þ ¼ 0:3164; MSVDðP2Þ ¼ 0:3463;

MdevðP1Þ ¼ 0:3; MdevðP2Þ ¼ 0:3;

M eucðP1Þ ¼ 0:3197; M eucðP2Þ ¼ 0:3590;

MPðP1Þ ¼ 0:45; MPðP2Þ ¼ 0:45;

MDðP1Þ ¼ 0:7; MDðP2Þ ¼ 0:7;

MEðP1Þ ¼ 0:45; MEðP2Þ ¼ 0:45;

M2ðP1Þ ¼ 0:4; M2ðP2Þ ¼ 0:4:

Clearly MSVD (and Meuc) both exhibit the desirable DD behavior: namely a differ-

ence in value for P1 and P2. Also, both vary in the same direction, and show an in-

crease when the off-diagonal probability is concentrated (as in P2) rather than diluted

(as in P1). This observation is consistent with MSVD (and Meuc) being sensitive to the

squares of the off-diagonal elements (discussed above). By contrast Mdev, MP, MD,

ME andM2 give identical values for both matrices, thereby violating DD and making

them less desirable metrics (at least for this example).

Likewise for a more extreme 5-d example

P1 ¼

0:5 0:2 0:1 0:1 0:1

0:2 0:5 0:1 0:1 0:1

0:1 0:2 0:5 0:1 0:1

0:1 0:1 0:2 0:5 0:1

0:1 0:1 0:1 0:2 0:5

0BBBBBB@

1CCCCCCA; P2 ¼

0:5 0 0 0 0:5

0 0:5 0 0 0:5

0 0 0:5 0 0:5

0 0 0 0:5 0:5

0:5 0 0 0 0:5

0BBBBBB@

1CCCCCCA:
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The corresponding metric values are given by

MSVDðP1Þ ¼ 0:5028; MSVDðP2Þ ¼ 0:5785;

MdevðP1Þ ¼ 0:5; MdevðP2Þ ¼ 0:5;

M eucðP1Þ ¼ 0:5060; M eucðP2Þ ¼ 0:6325;

MPðP1Þ ¼ 0:625; MPðP2Þ ¼ 0:625;

MDðP1Þ ¼ 0:9808; MDðP2Þ ¼ 1;

MEðP1Þ ¼ 0:625; MEðP2Þ ¼ 0:625;

M2ðP1Þ ¼ 0:6; M2ðP2Þ ¼ 0:5:

Again, MSVD and Meuc discriminate between P1 and P2 (with a larger value for

the more extreme matrix, P2), whereas Mdev, MP and ME are ‘‘blind’’ to the varia-

tions in the distribution of the off-diagonal ‘‘mass’’. MD and M2 do discriminate be-

tween the two matrices in this example, though they did not in the last. Also, M2

yields a larger value for P1 than for P2, inconsistent with the other metrics (MSVD,

Meuc and MD) which yield higher values for the more extreme matrix, P2.

From the above examples, it is clear thatMSVD andMeuc are preferable to the oth-
ers from theDD point of view. However, it is not immediately apparent which is pref-

erable between MSVD and Meuc. To answer this, consider the following two matrices

which differ only in the permutation of the non-diagonal entries within each row:

P1 ¼
0:8 0:2 0

0:3 0:7 0

0 0:4 0:6

0B@
1CA; P2 ¼

0:8 0 0:2

0 0:7 0:3

0:4 0 0:6

0B@
1CA: ðA:4Þ

The corresponding MSVD and Meuc metric values are given by

MSVDðP1Þ ¼ 0:3463; MSVDðP2Þ ¼ 0:3407;

M eucðP1Þ ¼ 0:3590; M eucðP2Þ ¼ 0:3590:

Since MSVD distinguishes between these matrices (i.e. satisfies DD) whereas Meuc

does not, we therefore prefer MSVD over Meuc on the grounds that it satisfies DD
more generally than does Meuc. Note that we would ideally prefer that our metric
yielded larger values for matrices whose off-diagonal content is distributed further

from the diagonal since these intuitively represent greater mobility from one time

step to the next (we may refer to this criterion as strong-distribution-discriminatory,

SDD). For example, a metric satisfying SDD would yield a larger value for P2 than

for P1 (from Eq. (A.4)), rather than the opposite behavior as exhibited by MSVD. We

have hitherto been unable to devise a suitable metric which satisfies SDD without

introducing ad hoc pre-weighting of matrix elements. 33 This remains a topic of cur-

rent research by the authors whereby we are attempting to adopt an information-
theoretic approach to construct an alternative metric which satisfies SDD.
33 For example, by pre-weighting each matrix element by ji � jj (where i and j represent the row and

column index, respectively) representing the distance of the given element from the diagonal.
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